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Understanding and
Controlling Results

To create accurate linearized models, it is important to be able to interpret
the results and to understand the linearization algorithms. One method of
interpreting the results is by simulating the linearized model and comparing
the output with the original model. The linearization algorithms can be
adjusted in various ways to control these results, as outlined in this chapter.

Comparing the Linearized and Methods for simulating the
Original Models (p. 1-2) linearized model and comparing the
results to the original model.

Linearization Algorithms (p. 1-9) Brief introduction to the two
main linearization methods with
advantages and disadvantages of

each
Block-by-Block Analytic Description of the default
Linearization (p. 1-11) linearization method with
suggestions for controlling the
results.
Numerical-Perturbation Description of an alternative
Linearization (p. 1-27) linearization method with
suggestions for controlling the
results.
Recommendations for Computing Description of what it means to
Operating Points and Creating linearize a Simulink® model and how

Accurate Linearized Models (p. 1-38) to use correct modeling techniques
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Comparing the Linearized and Original Models

Comparing simulations of the original model with simulations of the
linearized model helps to determine if the linearized system behaves in a
similar way to the original model. To make this comparison, re-insert the
linearized subsystem into the model, configure the inputs and operating
points so that they are the same as in the original model, and then compare
output signals from a simulation of the two models.

When comparing models, remember that the states, inputs, and outputs of the
linearized model are defined about an operating point of the original model,
using the following variables:

d(t) = x(2) — xg
dut) =ul) —uy
dy(@) = y®) - yo

This means that when the original model is at the operating point x(#)=x,,
u(t)=u,, y(t)=y,, the linearized model will be at the operating point dx(¢)=0,
du(t)=0, 8y(t)=0. To compare the models accurately, subtract z, from input
values and x,, from the initial state values in the linearized model, then add y,
to the output signal.

When you linearize only a portion of the original model, you should simulate
the linearized model by substituting it back into the model in place of the
original portion. This ensures that the operating point and inputs to the
linearized portion are correct. To do this, export the linearized model to the
workspace, delete the original portion from the model, and replace it with an
LTI System block based on the linearized model.

Example

This example compares the magball model with the linearized model
computed in “Linearizing the Model” in the online documentation:

1 If you have not done so already, linearize the magball model at the
targeted operating point computed in “Computing Operating Points from
Specifications”.



Comparing the Linearized and Original Models

2 To create a new model containing the linearized plant system, first export
the linearized model and operating point from the Control and Estimation
Tools Manager to the MATLAB® workspace. To do this, right click the
linearized model name in the project tree of the Control and Estimation
Tools Manager. Select Export from the menu. Accept the default name for
the model, Model_sys, and for the operating point, Model op.

3 Create a new Simulink® model, magball 1lin, which is a copy of the
original model, magball. Replace the Magnetic Ball Plant subsystem in
magball lin with an LTI System block (located in the Control System
Toolbox category of the Simulink Library Browser). Import the linearized
model into this block by entering Model_sys in the LTI system variable
field in the Block Parameters window.

4 For simulations of the nonlinear and linearized models to be compared, you
need to set the operating points for each model by specifying the initial
values of the states in the models:

a magball

To set the initial values for the magball model, in the Control and
Estimation Tools Manager, right click on the operating point that you
used for the linearization, and select Export to Workspace to open the
Export to Workspace dialog box.

Within the Export to Workspace dialog box, select Model Workspace
as the location to export the operating point to, and select the check box
labeled Use the operating point to initialize model.

1-3
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14

<) Export to Workspace - 0] x|

Select destination workspace:

{~ BaszeYWorkspace
% Model Workspace

“ariable Mame:

hp_magball
[+ Lze the operating poirt to intialize model:

0], | Cancell Help |

Click OK to export the operating point to the model workspace and use
it to define the initial values of states in the model.

b magball lin

In magball 1in, the operating point values for the linearized system will
all be zero since this subsystem was linearized about the operating point
values. The operating point values in the Controller will be the same as
in the original model since the Controller was not linearized. To create a
vector of initial state values with the correct state ordering, first create a
new operating point object for the system by typing

op=operpoint('magball_lin')

Change the operating point for the Controller in op to be the same as
those in Model op.

op.States(1).x=Model op.States(1).x

This returns the following operating point.

Operating Point for the Model magball lin.
(Time-Varying Components Evaluated at time t=0)

States:

(1.) magball lin/Controller/Controller
x: 0
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X: -2.56e-006
(2.) magball 1in/LTI System/Internal

x: 0
x: 0
x: 0

Inputs: None

Keep the operating point for the LTI system as zero.

Create a Simulink structure from this operating point using the
getstatestruct function. The structure contains the operating point
values in a format that Simulink can use to set initial values.

x_struct=getstatestruct(op);

To use the values in x_struct1, as initial values for magball 1lin, select
Simulation > Configuration Parameters in the magball 1in model
window, then select the Data Import/Export panel. Select the check
box next to Initial State and enter x_struct on the right. Click OK .

5 The output of magball 1in will be zero at the operating point. To create
an output signal that is comparable with that in magball, add a Constant
block, with a value of 0.05 to the output of magball 1lin. Similarly, the
input to magball 1lin should be zero at the operating point. This is
achieved by subtracting a value of 14 from the input signal of the linearized
system. The operating point values, 0.05 and 14, were found using a Scope
block to measure steady-state signal levels in the original model.

6 To observe the response of the models to a perturbation, add a Step block
with the following parameter values to the input to the plant in both
models.
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E Block Parameters: Step x|

—Step

Output a step.

—Parameters
Step time:
1

Initial walue:
jo

Final walue:
2

Sample time:
jo

[w  Interpret vectar parameters az 1-0

¥ Enable zero crossing detection

0K LCancel | Help

Parameter Values for Step Block

The model diagrams should now look like those in the following figures.
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Magball Model with a Step Block Added to the Input

~Imagball_lin
File Edit WYiew Simulation Format Tools Help
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Reference Errar
Out1
Desired LTI System

Height Contraller

Operating Point Operating Point

Walue of Contraller Value ofh\n
Output Qriginal Madel
Copyright 2004-2005 The hMathiode Inc.
Ready [1o02 [ [ |odets

Magball Model with Linearized Magnetic Ball Plant

7 Run simulations in both models. The output signals, in the Scope blocks,

are shown in the following figure.
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- 10| =
SECLL ABRB B SBELPLLY ABRB B

Scope Blocks from Original (left) and Linearized (right) Models

As shown in the figure, both the original and linearized models react to the
step input in a similar way.
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Linearization Algorithms

Simulink Control Design can use two different linearization methods.

The default method, which is used unless an option is selected, is called
block-by-block analytic linearization. To use the alternative method,
numerical-perturbation linearization, you must select an option in the
Linearization Options dialog box of the GUI, or if using functions, with

the 1inoptions function. The remainder of this chapter describes the two
linearization methods in more detail and provides suggestions for controlling
the results to create more accurate linearized models.

The default linearization method, block-by-block analytic linearization,
linearizes the blocks individually and then combines the results to produce
the linearization of the whole system. This method has several advantages:

e It divides the linearization problem into several smaller, easier problems.

¢ It defines the system being linearized by input and output markers on the
signal lines rather than root-level inport and outport blocks.

¢ It supports open loop analysis.

® You can control the linearization of each block by using an analytic
linearization that is programmed into the block or by selecting a
perturbation level for the block.

The main disadvantage of this method is that it cannot be used with models
that contain model references using the Model block.

Alternatively, numerical-perturbation linearization linearizes the whole
system by numerically perturbing the system’s inputs and states about

the operating point. This method has the advantage that it is quick and
simple, especially for large or complicated systems. In addition it is the only
linearization algorithm that supports models containing model references.
However, there are also several disadvantages with this method:

® It relies on root-level inport and outport blocks to define the system being
linearized.
® There is no support for open loop analysis.

® You have limited control over the perturbation levels for each block.

1-9
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¢ It does not use any of the analytic, pre-programmed block linearizations.
® It is sensitive to scaling issues (models with large and small signal values).
“Block-by-Block Analytic Linearization” on page 1-11 and

“Numerical-Perturbation Linearization” on page 1-27 discuss these methods
further.

1-10
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Block-by-Block Analytic Linearization

Block-by-block analytic linearization is the default linearization method

in Simulink Control Design. In this method, each of the blocks within

the linearization path is first linearized individually. The linearization of
the whole system is then computed by combining these results using the
algorithm discussed in . This approach breaks the problem into several
smaller problems. The following section gives details of the methods used to
linearize each block, with suggestions for controlling the linearizations to
create more accurate linearized models.

Note The block-by-block analytic linearization algorithm does not work with
models that contain references to other models using the Model block. Use
the numerical perturbation linearization algorithm to linearize these models.

Individual Block Linearization Methods

There are two methods that Simulink Control Design uses to linearize the
individual blocks in a model. Each method has options that you can control to
create accurate linearized models.

Analytic Linearization

Many Simulink blocks contain analytic Jacobians for exact linearization.
When linearizing a system using block-by-block analytic linearization, you
can use these analytic linearizations instead of numerically perturbing the
block. This is especially useful for blocks that contain discontinuities and do
not give good results using numerical perturbation.

The following table lists the Simulink blocks that contain analytic Jacobians
for linearization. For more information see the reference page for each block.

1-11
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1-12

Analytic Block Jacobians

Block Analytic | Notes
Jacobian
(Y/N)

Continuous Library

Derivative Y Allows control of the time constant
for the filter constant

Integrator Y Includes option to exclude saturation
and resets from linearization

State-Space Y

Transfer Fcn Y

Transport Delay Y Allows control of Padé order

Variable Transport Y Allows control of Padé order

nﬂ]0‘7

Zero-Pole Y

Discontinuities Library

Backlash N

Coulomb and Viscous N

Friction

Dead Zone Y Includes option to treat as gain when
linearizing

Dead Zone Dynamic Y

Hit Crossing N

Quantizer Y Includes option to treat as gain when
linearizing

Rate Limiter Y Includes option to treat as gain when
linearizing

Rate Limiter Dynamic N

Relay N
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Analytic Block Jacobians (Continued)

Block Analytic | Notes
Jacobian
(Y/N)

Saturation Y Includes option to treat as gain when
linearizing

Saturation Dynamic

Wrap to Zero N

Discrete Library

Difference Y

Discrete Derivative N

Discrete Filter Y

Discrete State-Space Y

Discrete Transfer Fen Y

Discrete Zero-Pole Y

Discrete-Time Y Includes option to ignore saturation

Integrator and resets during linearization.
Jacobian not supported for
non-double data types.

First-Order Hold N

Integer Delay N

Memory Y Linearizes to a gain of 1 when driven
by a continuous signal, linearizes
to a Unit Delay when driven by a
discrete signal.

Tapped Delay N

Transfer Fen First Y

Order

Transfer Fen Lead or Y

Lag
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1-14

Analytic Block Jacobians (Continued)

Block Analytic | Notes
Jacobian
(Y/N)
Transfer Fcn Real Zero Y
Unit Delay Y Jacobian does not support
frame-based signals
Weighted Moving N
Average
Zero-Order Hold N

Logic and Bit Operations Library

Bit Clear

N

Bit Set

Bitwise Operator

Combinatorial Logic

Compare To Constant

Compare To Zero

Detect Change

Detect Decrease

Detect Fall Negative

Detect Fall
Nonpositive

Zlz|z|z|z|2|2|=2

Detect Increase

Detect Rise

Nonnegative

Detect Rise Positive

Extract Bits

Interval Test

Interval Test Dynamic

Z|Z|<|2| 2|2
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Analytic Block Jacobians (Continued)

Block Analytic | Notes
Jacobian
(Y/N)
Logical Operator N
Relational Operator N
Shift Arithmetic N
Lookup Tables Library
Cosine N
Direct Lookup Table N
(n-D)
Interpolation (n-D) Y
using PreLookup
Lookup Table N
Lookup Table (2-D) N
Lookup Table (n-D) N
Lookup Table Dynamic N
PreLookup Index Y
Search
Sine N
Math Operations Library
Abs Y
Add Y
Algebraic Constraint N
Assignment N
Bias Y
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Analytic Block Jacobians (Continued)

Block

Analytic
Jacobian
(Y/N)

Notes

Complex to
Magnitude-Angle

N

Complex to Real-Imag

Divide

Dot Product

Gain

Magnitude-Angle to
Complex

z ||z || =z

Math Function

Matrix Concatenation

MinMax

MinMax Running
Resettable

Z|Zz|z|=z

Polynomial

Product

Product of Elements

Real-Imag to Complex

Reshape

Rounding Function

Sign

KlZ|Z2|Z2 |4 (<=2

Linearizes to Inf at zero, linearizes
to zero otherwise

Sine Wave Function

Z

Slider Gain

Subtract
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Analytic Block Jacobians (Continued)

Block Analytic | Notes
Jacobian
(Y/N)

Sum Y

Sum of Elements Y

Trigonometric N

Function

Unary Minus N

Weighted Sample Time N

Math

Model Verification Library

Assertion N/A Does not contain outputs
Check Discrete N/A Does not contain outputs
Gradient

Check Dynamic Gap N/A Does not contain outputs
Check Dynamic Lower N/A Does not contain outputs
Bound

Check Dynamic Range N/A Does not contain outputs
Check Dynamic Upper N/A Does not contain outputs
Bound

Check Input N/A Does not contain outputs
Resolution

Check Static Gap N/A Does not contain outputs
Check Static Lower N/A Does not contain outputs
Bound

Check Static Range N/A Does not contain outputs
Check Static Upper N/A Does not contain outputs

Bound

Model Wide Utilities Library

1-17
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Analytic Block Jacobians (Continued)

Block Analytic | Notes

Jacobian

(Y/N)
Block Support Table N/A Does not contain outputs
DocBlock N/A Does not contain outputs
Model Info N/A Does not contain outputs
Time-Based N/A Does not contain outputs
Linearization
Trigger-Based N/A Does not contain outputs
Linearization

Ports and Subsystems Library

Configurable N/A Only the blocks within the subsystem

Subsystem are part of the linearization

Atomic Subsystem N/A Only the blocks within the subsystem
are part of the linearization

CodeReuse Subsystem N/A Only the blocks within the subsystem
are part of the linearization

Enable N

Enabled and Triggered N/A Only the blocks within the subsystem

Subsystem are part of the linearization

Enabled Subsystem N/A Only the blocks within the subsystem
are part of the linearization

For Iterator Subsystem N/A Only the blocks within the subsystem
are part of the linearization

Function-Call N/A Only the blocks within the subsystem

Generator are part of the linearization

Function-Call N/A Only the blocks within the subsystem

Subsystem are part of the linearization

If N
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Analytic Block Jacobians (Continued)

Block Analytic | Notes
Jacobian
(Y/N)
If Action Subsystem N/A Only the blocks within the subsystem
are part of the linearization
Inport N/A Does not contain outputs
Model N
Outport N/A Does not contain inputs
Subsystem N/A Only the blocks within the subsystem
are part of the linearization
Switch Case N
Switch Case Action N/A Only the blocks within the subsystem
Subsystem are part of the linearization
Trigger N
Triggered Subsystem N/A Only the blocks within the subsystem
are part of the linearization
While Iterator N/A Only the blocks within the subsystem

Subsystem are part of the linearization
Signal Attributes Library

Data Type Conversion Y

Data Type Conversion Y

Inherited

Data Type Duplicate N/A Does not contain outputs
Data Type Propagation N/A Does not contain outputs
Data Type Scaling Y

Strip

IC N

Probe N
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1-20

Analytic Block Jacobians (Continued)

Block Analytic | Notes
Jacobian
(Y/N)

Rate Transition Y

Signal Conversion Y

Signal Specification Y

Weighted Sample Time N

Width N

Signal Routing Library

Bus Assignment Y

Bus Creator Y

Bus Selector

Data Store Memory N/A Does not contain inputs or outputs

Data Store Read Y Linearizes to a gain of 1. Assumes
that there is no delay between data
store read and data store write.

Data Store Write Y Linearizes to a gain of 1. Assumes
that there is no delay between data
store read and data store write.

Demux N/A

Environment Y

Controller

From N/A

Goto N/A

Goto Tag Visibility N/A

Index Vector Y

Manual Switch Y

Merge N
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Analytic Block Jacobians (Continued)

Block Analytic | Notes
Jacobian
(Y/N)

Multiport Switch Y

Mux N/A

Selector Y

Switch Y

Sources Library - N/A No Inputs

Sinks Library - N/A No Outputs

User Defined Functions Library

Embedded MATLAB N
Function

Fen N
Level-2 M-File N
S-Function

MATLAB Fen N
S-Function N
S-Function Builder N
Additional Math and Discrete Library
Fixed-Point Y
State-Space

Transfer Fen Direct N
Form II

Transfer Fen Direct N
Form II Time Varying

Unit Delay Enabled Y
Unit Delay Enabled Y
External IC
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1-22

Analytic Block Jacobians (Continued)

Block Analytic | Notes
Jacobian
(Y/N)

Unit Delay Enabled Y

Resettable

Unit Delay Enabled Y

Resettable External IC

Unit Delay External IC Y

Unit Delay Resettable Y

Unit Delay Resettable Y

External IC

Unit Delay With Y

Preview Enabled

Unit Delay With Y

Preview Enabled

Resettable

Unit Delay With Y

Preview Enabled

Resettable External

RV

Unit Delay With Y

Preview Resettable

Unit Delay With Y

Preview Resettable

External RV

Decrement Real World Y

Decrement Stored Y

Integer

Decrement Time To Y

Zero

Decrement To Zero Y
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Analytic Block Jacobians (Continued)

Block Analytic | Notes
Jacobian
(Y/N)

Increment Real World Y

Increment Stored Y

Integer

Several of these blocks include options to control the linearization that you
can adjust in the Block Parameters window. For example, you can change the
order of the Padé approximation used in the Transport Delay block or select
the Treat as gain when linearizing option in the Saturation block. The
Notes column of the table above gives details on blocks that include these
options.

Note The preprogrammed, analytic block linearizations are only used in
block-by-block analytic linearization. When using numerical-perturbation
linearization, these blocks will be numerically perturbed along with the rest
of the system.

Block Perturbation

When a preprogrammed block linearization cannot be used, Simulink Control
Design will compute the block linearization by numerically perturbing the
states and inputs of the block about the operating point of the block. As
opposed to the numerical-perturbation linearization method, this perturbation
is local and its propagation through the rest of the model is restricted.

The block perturbation algorithm involves introducing a small perturbation to
the nonlinear block and measuring the response to this perturbation. Both
the perturbation and the response are used to create the matrices in the linear
state-space model of this block. Changing the size of the perturbations will
change the resulting linearized model.

As described in “Linearization of Nonlinear Models”, a nonlinear Simulink
block can be written as a state-space system:
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1-24

w(t) = f (x(0),u),?))
y(@) = g (x@),u),t))

In these equations, x(¢) represents the states of the block, u(¢) represents the
inputs of the block, and y(¢) represents the outputs of the block.

A linearized model of this system is valid in a small region around the
operating point t=t, x(¢,)=x,, u(t,)=u,, and y(t,)=g(x,,ut,)=y, Subtracting the
operating point values from the states, inputs, and outputs defines a set of
variables centered about the operating point:

doe(t) = x(t) — xg
du(t) = u(t) —uy
() = y(&) - o

The linearized model can be written in terms of these new variables and is
usually valid when these variables are small, i.e. when the departure from
the operating point is small:

d(t) = Adx(t) + Bdu(?)
dy(t) = Cdx(t) + Ddult)

The state-space matrices A, B, C, and D of this linearized model represent
the Jacobians of the block, as defined in “Linearization of Nonlinear Models”.
To compute the matrices, the states and inputs are perturbed, one at a time,
and the response of the system to this perturbation is measured by computing

dx and &y. The perturbation and response are then used to compute the
matrices in the following way

i, —x i, —x

. X, 0 . u,; 0
A( i) =—* ,  BGi)=—=*

Xp,i ~ %o Upi —Uo

. yxp, ~Jo . y‘u ; ~Yo
CG,i)=—* ,  D(i=—2=

pi~ *o upz — %o



Block-by-Block Analytic Linearization

® x,;1s the state vector whose ith component is perturbed from the operating
point value.

® x,is the state vector at the operating point.

*u,; is the input vector whose ith component is perturbed from the operating
point value.

® 1, is the input vector at the operating point.

. x|xpi is the value of x atx;, u,.

* x| isthevalueof x atu_,, x,.
Up; p:i? “o

® %, is the value of % at the operating point.

* y|, isthevalueof y atx ;, u

o .
pii bl 0

* y|, isthevalueof y atu ; x

G X
pii P’ o

® y,is the value of y at the operating point.

Linearized models of discrete-time or multi-rate blocks are computed in a
similar way. See “Linearization of Discrete-Time Models” and “Linearization
of Multi-Rate Models” for the equations of linearized discrete-time and
multi-rate systems.

Note A perturbed value is one that has been changed by a very small amount
from the operating point value. The default difference between the perturbed

value and the operating point value is 107° (1 + |x|) for block-by-block analytic
linearization, where x is the operating point value.

Changing the size of the perturbations will change the linearization results.

The default perturbation size is 107° (1 + |x|) where x is the operating point
value of the state or input being perturbed. To change the perturbation
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size of the states in the Magnetic Ball Plant block in the magball model to
1077 (1+|x]), type

blockname='magball/Magnetic Ball Plant'
set_param(blockname, 'StatePerturbationFordacobian', '1e-7")

To change the perturbation size of the input of the Magnetic Ball Plant block
to 1077 (1+u|), where u is the input signal level, follow these steps:
1 Get the block’s port handles

ph=get_param('magball/Magnetic Ball Plant', 'PortHandles')

2 Get the inport
pin=ph.Inport(1)
3 Set the perturbation level for this inport

set_param(pin, 'PerturbationFordacobian','1e-7")

If there is more than one inport, you can choose to assign a different
perturbation level to each. The following figure shows an S-Function block
with two input signals, the actual signal and an index variable. Since
you probably do not want to perturb the index signal, you can assign a
perturbation level of zero to this inport.

Signal
—_—> .
S-Function |—mmn—p

Index
Block Containing Two Inports
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Numerical-Perturbation Linearization

An alternative linearization method available for use in Simulink Control
Design is numerical-perturbation linearization, which computes state-space
matrices for the linearized model by numerical perturbation of the whole
system. The method is relatively quick and simple, although as mentioned in
“Linearization Algorithms” on page 1-9, it does have some disadvantages.

Numerical-perturbation linearization requires that root-level inport and
outport blocks be present in the model. These blocks define the portion of the
model that you want to linearize instead of inserting input and output points
by right-clicking on the signal lines. Any input, output, or open loop points on
signal lines in the model will be ignored when using numerical-perturbation
linearization.

The perturbation is introduced to the system at the root level inport

blocks and in the states of the system. The response to the perturbation is
measured at the outport blocks.Suggestions for controlling the results of
numerical-perturbation linearization to create accurate linearized models are
given in “Controlling the Results of Numerical-Perturbation Linearization”
on page 1-30

Note The numerical perturbation linearization algorithm is the only
linearization algorithm that works with models that contain references to
other models using the Model block.

Invoking Numerical-Perturbation Linearization

Prior to Simulink 3.0, numerical-perturbation linearization was the only
linearization method available with Simulink. Although block-by-block
analytic linearization is now the default linearization method, you might
choose to use numerical-perturbation linearization if your model is very
large or complicated.

To use numerical-perturbation linearization with the Simulink Control Design
GUI, select Tools > Options while in the Linearization Task node of the
Control and Estimation Tools Manager and select Numerical-Perturbation
from the Linearization Algorithms menu.
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To use numerical-perturbation linearization with the linearize function,
set the LinearizationAlgorithm option to 'numericalpert' with the
linoptions function.

linopt=1linoptions('LinearizationAlgorithm', 'numericalpert"')

To linearize the model, type
sys=linearize('modelname’',op,linopt)

where modelname is the name of the model being linearized and op is the
operating point object for the system.

Perturbation Algorithm

The numerical perturbation algorithm involves introducing a small
perturbation to the nonlinear model and measuring the response to this
perturbation. Both the perturbation and the response are used to create
the matrices in the linear state-space model. Changing the size of the
perturbations will change the resulting linearized model.

As described in “Linearization of Nonlinear Models”, a nonlinear Simulink
model can be written as a state-space system:

w(t) = f (x(Ou®),?))
(@) = g(x@®u(t),?))

In these equations, x(¢) represents the states of the model, u(¢) represents the
inputs of the model, and y(¢) represents the outputs of the model.

A linearized model of this system is valid in a small region around the
operating point ¢=t, x(¢,)=x,, u(t))=u,, and y(t,)=g(xy,uyt,)=y, Subtracting the
operating point values from the states, inputs, and outputs defines a set of
variables centered about the operating point:

Soc(t) = x(t) — x,,
dut) =u®) —u,
@) =y@®) -y,
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The linearized model can be written in terms of these new variables and is
usually valid when these variables are small, i.e. when the departure from
the operating point is small:

S(t) = Adx(?) + Bdu(?)
dy(t) = Cdx(t) + Ddu(t)

The state-space matrices A, B, C, and D of this linearized model represent the
Jacobians of the system, as defined in “Linearization of Nonlinear Models”.
To compute the matrices, the states and inputs are perturbed, one at a time,
and the response of the system to this perturbation is measured by computing

ox and dy. The perturbation and response are then used to compute the
matrices in the following way

x|x =%, x|u =%,
AGi)=—2 2 Bl = e
Tpi = %o Upi —Uo
y|x Yo y|u Yo
CGp)=—=2——, D(,i))=—2—
Xpi = %o Upi ~Uo

where

® x,; is the state vector whose ith component is perturbed from the operating
point value.

® x, is the state vector at the operating point.

* u,; is the input vector whose ith component is perturbed from the operating
point value.

® u, is the input vector at the operating point.

e x| isthevalueof & atx_,, u,.
Xy p,1> 7o

. x|u is the value of x atu_., x

X .
pii bl 0

® x, is the value of % at the operating point.
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* y|, isthevalueof y atx ;, u

i p,i> “o*
* y|, isthevalueof y atu ; x,
Pt

® y,is the value of y at the operating point.

Linearized models of discrete-time or multi-rate systems are computed in a
similar way. See “Linearization of Discrete-Time Models” and “Linearization
of Multi-Rate Models” for the equations of linearized discrete-time and
multi-rate systems.

Note A perturbed value is one that has been changed by a very small
amount from the operating point value. The default difference between

the perturbed value and the operating point value is 107 +1078 |x| for
numerical-perturbation linearization.

Controlling the Results of Numerical-Perturbation
Linearization

Several factors influence the creation of accurate linearized models. “What
Is Linearization?” discusses some of these factors, such as careful selection
of operating points. Factors that are particular to numerical-perturbation
linearization are presented here, with suggestions for controlling them.

Setting the Perturbation Level
In numerical-perturbation linearization, there are three options for setting
the perturbation levels of states and inport blocks:

1 You can accept the default perturbation levels. The default perturbation

levels for the states are 107 +1078 |x|, where x is a Simulink structure or
vector of the operating point values for the states in the model. Similarly,

default perturbation levels for the inport blocks are 1075 +1078 |u|, where
u is a Simulink structure or vector of the operating point values for the
inputs in the model.
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2 You can edit the linearization property NumericalPertRel using the
linoptions function. The value of this property adjusts the perturbations
in the following way:

® The perturbation of the states is

NumericalPertRel + 10~ x NumericalPertRel x |x].

® The perturbation of the inputs is
NumericalPertRel + 102 x NumericalPertRel x ||

When using the Control and Estimation Tools Manager graphical interface,
select Tools > Options to open the Options dialog, and then select the
Linearization tab-panel. Within the Linearization panel, make sure
that you have selected Numerical perturbation as the Linearization
algorithm and then enter a value for Relative Perturbation level under
Options for numerical perturbation algorithm.

3 You can provide individual perturbation levels for each state and
inport block. These values override the values computed using the
NumericalPertRel value. Set the perturbation levels using the
linoptions function to edit the linearization properties NumericalXPert
and NumericalUPert. To specify the absolute perturbation levels for
NumericalXPert and NumericalUPert, you can use the operpoint function
to create an operating point object and then edit the operating point values
using dot-notation or the set function.

When using the Control and Estimation Tools Manager graphical interface,
select Tools > Options to open the Options dialog, and then select the
Linearization tab-panel. Within the Linearization panel, make sure
that you have selected Numerical perturbation as the Linearization
algorithm and then enter values for State Perturbation level and
Input Perturbation level under Options for numerical perturbation
algorithm. You can enter either scalars or operating point objects created
with the operpoint function. State Perturbation level and Input
Perturbation level values override Relative Perturbation level values.
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Example: Command-Line Numerical Perturbation Linearization
of a Model Reference Model

Simulink Control Design supports linearization of models that contain
references to other models, using the Model block, however you must use the
Numerical Perturbation linearization algorithm to linearize these models.
The following example illustrates how to linearize a model reference model at
the MATLAB command line using numerical perturbation. For information
on linearizing a model reference model using the Simulink Control Design
graphical interface, see “Example: Using the Graphical Interface for
Numerical Perturbation Linearization of a Model Reference Model” on page
1-34.

1 Open the model.

In this example, we will use the scdairframe_reference.mdl model,
included with Simulink Control Design. The model uses a Model block to
reference another Simulink model, eom.md1, hence numerical perturbation
is the only linearization algorithm that you can use with this model.

Enter

scdairframe_reference

at the MATLAB command line to open this model.
2 Set Inport and Outport blocks.

Linearization using the numerical perturbation algorithm is between
the root level Inport and Outport blocks, rather than input and output
points on signal lines. When your model does not already contain Inport
or Outport blocks, you need to add them to the points where you want to
perturb the model, and measure the response. Note that in this case the
scdairframe_reference model already contains one Inport block and
two Outport blocks.

3 Create an operating point object for the model.

There are several possible methods for doing this, depending on the model

you are using and the information you have about the operating point. See
“Specifying Operating Points Using Functions” in the online documentation
for more information on creating operating points. For the purposes of this
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example, to illustrate the use of the numerical perturbation linearization
algorithm, we will simply create a default operating point with the
following command:

op_point=operpoint('scdairframe_reference')

4 Specify the linearization algorithm

By default, the linearization algorithm is set to block-by-block linearization.
To change the algorithm to numerical perturbation you need to create a
linearization options object and set the 'LinearizationAlgorithm' field
to 'numericalpert', using the following command:

options=1linoptions('LinearizationAlgorithm', 'numericalpert')

5 Set the perturbation levels

By default, the state and input perturbation levels are set to

le™® +1e78 ||
and

le®+1e® |ue]
respectively, where |x| and |u| are the absolute values of the states and
inputs. These values should be sufficient for most applications and you
should not typically need to change them. However, if you want to specify
individual perturbation values for each state, you can create an operating
point object, edit the state values within this object, and then assign, these
values to the NumericalXPert option, using the following commands:

state pert=operpoint('scdairframe_reference');
state pert.states(1).x=[1e-8;1e-9];

state pert.states(2).x=1e-7;

state pert.states(3).x=[1e-7;1e-8];

state pert.states(4).x=1e-9;
options.NumericalXPert=state_ pert;

6 Linearize model

1-33



1 Understanding and Controlling Results

1-34

The following command linearizes the model about the chosen operating
point, using the perturbation settings in the linearization options object,
and returns the state-space matrices of the linearized model:

sys=1linearize('scdairframe_reference',op_point,options)

Example: Using the Graphical Interface for Numerical
Perturbation Linearization of a Model Reference Model

In the previous example, a model reference model,
scdairframe_reference.mdl, was linearized using Simulink Control Design
functions for numerical perturbation. In the following example, we will use
the numerical perturbation algorithm to linearize the same model within the
Control and Estimation Tools Manager graphical interface.

1 Open the model.

In this example, we will use the scdairframe_reference.mdl model,
included with Simulink Control Design. The model uses a Model block to
reference another Simulink model, eom.md1, hence numerical perturbation
is the only linearization algorithm that you can use with this model.

Enter

scdairframe_reference

at the MATLAB command line to open this model.
2 Set Inport and Outport blocks.

Linearization using the numerical perturbation algorithm relies on
perturbing root level Inport and Outport blocks, rather than input and
output points on signal lines. When your model does not already contain
Inport or Outport blocks, you need to add them to the points where you
want to perturb the model, and measure the response. Note that in this
case the scdairframe_reference model already contains one Inport block
and two Outport blocks.

3 Open a linearization task for the model in the Control and Estimation
Tools Manager.
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Within the scdairframe_reference.mdl model window, select

Tools > Control Design > Linear Analysis. This opens the Control and
Estimation Tools Manager and creates a task for linearization. Note that
the Control and Estimation Tools Manager displays a warning dialog to
inform you that it has automatically selected the numerical perturbation
linearization algorithm for the model. Click the OK button the close this
dialog.

You should also notice that since you will numerically perturb this
model using root-level Inport and Outport blocks, you cannot specify any
linearization points in the Analysis I/Os panel of the Linearization Task.

Create an operating point object for the model.

There are several possible methods for doing this, depending on the
model you are using and the information you have about the operating
point. See “Specifying Operating Points” in the online documentation for
more information on creating operating points. For the purposes of this
example, to illustrate the use of the numerical perturbation linearization
algorithm, we will skip this step and use the default operating point for
the linearization.

Specify the linearization algorithm

Since you can only linearize the scdairframe_reference.mdl model using
the numerical perturbation algorithm, the Control and Estimation Tools
Manager selected this algorithm automatically when the linearization
task was created. To select numerical perturbation linearization as

the algorithm for a model that does not use model references, select
Tools > Options within the Control and Estimation Tools Manager to
open the Options dialog, select the Linearization panel in the Options
dialog, and then select Numerical perturbation as the Linearization
algorithm.

Set the perturbation levels

To use perturbation levels other than the default settings, select

Tools > Options within the Control and Estimation Tools Manager to
open the Options dialog, and then select the Linearization panel. Under
Options for numerical perturbation algorithm, enter perturbation
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values. The perturbation values can be either scalars, vectors, operating
point objects, or Simulink structures of state values.

For this example, enter 1e-9 in the State perturbation level box. This
value overrides the state perturbation values computed from the Relative
perturbation level setting. However, because we have not explicitly
specified the Input perturbation level, the algorithm will still use the
Relative perturbation level setting to compute input perturbations.

Note that these perturbation values are not the same as the perturbation
values used in the previous example.

7 Linearize the model

a Select Linearization Task in the panel on the left of the Control and
Estimation Tools Manager.

b Select the Operating Points panel on the right.

¢ Within the Operating Points panel, select the operating point that you
want to use for the linearization. For this example, there should be only
one choice, the default operating point.

d Click the Linearize Model button to linearize the model around this
operating point. The results are plotted in the LTI Viewer.

Handling Special Blocks

Certain blocks, especially those containing discontinuities such as Saturation
or Transport Delay, may not linearize well using numerical-perturbation.
Although these blocks often have preprogrammed linearizations that are
used with block-by-block analytic linearization instead of numerically
perturbing them, they are not used in numerical-perturbation linearization.
An alternative solution is to replace these blocks with an appropriate block
before linearizing your model. For example, you might choose to replace a
Saturation block with a Gain block.

Random Number blocks inside models that reference other models using the
Model block, can also sometimes cause inaccurate numerical perturbation
linearization results. Care should be taken when linearizing or computing
operating points with model reference models that use these blocks.
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Handling Feedback Loops

“Understanding Open Loop Analysis” in the online documentation
discusses the effect of feedback loops on the results of a linearization. With
block-by-block analytic linearization, you can perform open loop analysis
without removing feedback loops. When using numerical-perturbation
linearization, the only way to remove the effect of feedback loops is to
manually remove them from the model and manually force the operating
point to remain the same as the original model.
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Recommendations for Computing Operating Points and
Creating Accurate Linearized Models
Particular blocks and modeling situations in Simulink can sometimes cause
difficulties with computing operating points (trimming) and linearization.
However, by understanding what it means to trim or linearize a Simulink

model and by using the correct modeling techniques, you can create accurate
operating points and linearized models for use in further analysis and design.

This section consists of examples that highlight modeling situations that can
lead to problems when computing operating points and linearized models,
with recommendations for ways to avoid these situations. The examples focus
on the following modeling situations:

® “Blocks with Discontinuities” on page 1-38

® “Non-Double Data Types” on page 1-40

e “Pulse Width Modulation” on page 1-41

® “Transport Delay, Memory, and Other Blocks with Non-Trimmable States”
on page 1-43

® “Integrator Blocks Near Saturation or a Reset Point” on page 1-46

¢ “Event-Based Models and Triggered Subsystems” on page 1-47

® “Computing Operating Points for SimMechanics Models” on page 1-50
® “Choosing Initial Values for Computing Operating Points” on page 1-51

Blocks with Discontinuities

There are several Simulink blocks that contain discontinuities, such as the
Sign block, whose behavior is shown in the following figure.
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The very large derivatives that occur at the point of discontinuity can cause
problems with linearization. For example, the Sign block has the following
linearization

D=0,u#0

D=oco,u=0

where D is a state-space matrix, and u is the input signal to the block.

When these blocks are within the linearization path of your model, the
resulting linearized model could potentially have very large values. There is
no obvious solution to this problem and it is recommended that you remove or
replace these blocks. However, when your model operates in a region away
from the point of discontinuity, the linearization will be zero. This should not
cause any problems, although when the linearizations of several blocks are
multiplied together (as in a feedback path) it can cause the linearization of
the system to be zero.

When these blocks are outside the linearization path, they can still
contribute to the definition of the operating point of the model but will not
otherwise affect the linearization. It is safe to use them for reference signals,
disturbances, and any other signals and blocks that are not being linearized.

Other examples of blocks with discontinuities include

® Relational Operator blocks
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Relay block

Logical Operator blocks
Stateflow blocks

Quantizer block (has an option to treat as a gain when linearizing)

Saturation block (has an option to treat as a gain when linearizing)

Deadzone block (has an option to treat as a gain when linearizing)

Non-Double Data Types

Blocks that have non-double data type signals as either inputs or outputs, and
which do not have a preprogrammed exact linearization, will automatically
linearize to zero as they cannot be numerically perturbed. For example, many
logical operator blocks have Boolean outputs and will therefore linearize to
Zero.

To work around this problem, you can use a Data Type Conversion block,
which does have a preprogrammed exact linearization, to convert your signals
to doubles before linearizing the model. The following example illustrates this
concept. The model in this example is configured to linearize the Square block
at an operating point where the input is 1. The resulting linearized model
should be 2 but the input to the Square block is Boolean and the linearization
is zero.

E!datatype_mudel I [=] S

File Edit VYiew Simulation Format Tools  Help
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¥

Constant Compare hl ath Scope
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However, by inserting a Data Type Conversion block before the linearization
input point, the input signal to the Square block is a double, and the linearized
model gives the correct response of 2.

E!datatype_cunversiun_mudel o ] |

File Edit Wiew Simulation Format Tools Help

O Hd&| &BR |22 II'ID.D INormaI = 0

1 T o double 3 | o2 2 | .
Constant Compare Data Type Conversion M ath Scope
To Constant Function
Ready [10d% | | [odeas v

Overriding Non-Double Data Types

When linearizing a model that contains non-double data types but still runs
correctly in all double precision, you can choose to override all data types
with doubles. To do this, in the model window select Tools > Fixed-Point
Settings from the menu. This opens the Fixed-Point Settings window. Within
this window select True doubles from the Data type override menu. When
linearizing and simulating the model, it now uses doubles for all data types.

Note This method does not work when the model relies on other data types
in its algorithm, such as relying on integer data types to perform truncation
from floats.

Pulse Width Modulation

Many industrial applications use Pulse Width Modulation (PWM) signals
because of their robustness in the presence of noise. The following figure
shows two examples of PWM signals. In the first example, a DC voltage of
0.2V is represented by a PWM signal with a 20% duty cycle (a value of 1 for
20% of the cycle, followed by a value of 0 for 80% of the cycle). The average
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signal value is 0.2V. The second example shows a PWM representation of a
0.8V DC signal, where the duty cycle is 80%.

Py Input = 0.2

-y

IS
=
=
0l DS_ _
:

D- 1 1 1 1 1 1 1 1 1

a ool o002 003 oo04 005 006 007 003 003 041

Time (sec.)
Py Input = 0.5

1 T T T T T T T T T
=
=
=
vpst .
:

D_

1 1 1 1 1 1 1 1 1
oo1r o0z 003 004 003 006 009 003 009 041

o
Time (sec.)

The model, pwm.md1, shown below, converts a constant signal to a PWM signal.

Slpwm [ B3
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When linearizing a model containing PWM signals there are two effects you
should take into account:

® The signal level at the operating point will be one of the discrete values
within the PWM signal, not the DC signal value. For example, in the
model above, the signal level will be either 0 or 1, not 0.8. This change in
operating point will affect the linearized model.

® The creation of the PWM signal within the subsystem Voltage to
PWM, shown below, uses a comparator block, the Compare to Zero block.
Comparator blocks do not linearize well due to their discontinuities and the
non-double outputs.

E!pwm,.-"?ultage to PVWYM

File Edit “Wiew Simulation Formak Tools  Help
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A solution to the two problems described above is to consider removing the
PWM block before linearizing the model.

Transport Delay, Memory, and Other Blocks with
Non-Trimmable States

Blocks with non-double, discrete states cannot accurately be used to compute
operating points from design specifications (also called trimming) because
these special states cannot be seen by the findop function. Blocks that
contain these states include
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® Action Subsystem blocks which are not enabled

¢ Backlash block

¢ Embedded MATLAB Function block with persistent data

e Transport Delay and Variable Transport Delay blocks

® Memory block

¢ Rate Transition block

* Stateflow blocks

¢ S-Function blocks with states not registered as Continuous or Double Value

Discrete

To determine when your model contains any of these blocks with states that
cannot be trimmed, run the following command

sldiagnostics('modelname’', 'CountBlocks')

which returns a list of all the blocks in the model and the number of
occurrences of each.

When you have Memory blocks or Variable Transport Delay/Transport Delay
blocks in your model, you can properly configure the initial outputs of these
blocks so that trim or linearization uses the correct output value. The model
delayex.mdl, shown below, illustrates this issue.
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In this model the Memory block is configured in the block dialog to have an
initial output of 0 but is driven by a Constant block with an output of 1. This
causes the output signal of the block to be 0 in the operating point. However,
in the steady-state operating point for this model, the output of the Memory
block is 1. To create an accurate operating point or a linearized model that is
based on this more accurate operating point, select the Direct feedthrough
of input during linearization option in the block dialog. This will force
the output of the Memory block to be the same as the input during trim or
linearization.

E! Function Block Parameters: Memory Ed

b oy
’7 Apply a ohe integration step delay. The output iz the previous input value.

b ain IState properties |

[ritial condition;
|0

[T Inherit sample time

[ Direct feedthrough of input during linearization

Cancel Help Apply

The problem of block output during trim or linearization also occurs for
the Backlash block although, in this case, the block does not have a direct
feedthrough option. Extra care should be taken when linearizing a model
containing Backlash blocks.

For other blocks with states that are not seen by trim, you should consider
removing them from the model while trimming. If the output of the block does
not effect any of the state derivatives or desired output levels downstream it
does not pose a problem for trim and you do not need to remove it. If the block
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does have downstream impact, consider replacing it using a configurable
subsystem when trimming.

Transport Delay Blocks

Transport Delay blocks can cause additional problems when you use the Padé
approximation option for linearization within a multi-rate model. In this case,
the discretization of the Padé approximation has a frequency response that
does not match the frequency response of the original Transport Delay. This
can lead to linearized models which do not behave as expected. A solution

to this problem is to discretize the transport delay first, using the Model
Discretizer, and then linearize the model using the Padé approximation. See
“Model Discretizer” in the Simulink documentation for more information on
using the Model Discretizer.

Integrator Blocks Near Saturation or a Reset Point

When an Integrator block has an external reset condition or output limitations
(saturation) and the model is operating near the point where the Integrator is
reset or the output is limited, it might be more meaningful for the linearization
to ignore the effect of the saturation or reset. To linearize a model around an
operating point that causes the integrator to reset or saturate, select Ignore
limit and reset when linearizing in the Integrator block parameters
dialog box. Selecting this option causes the linearization to treat this block as
unresettable and as having no limits on its output, regardless of the settings
of the block’s reset and output limitation (saturation) options.
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Event-Based Models and Triggered Subsystems

The linearization of triggered subsystems and other event-based models

can be particularly difficult because of the system’s dependence on previous
events. In particular, the execution of a triggered system depends on previous
signal events such as zero crossings. Therefore, for linearization, which takes
place at a particular moment in time, a trigger event will never happen. Thus,
while the event-based dynamics contribute to the definition of the system’s
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operating point, this information is not captured by the list of values of states
and inputs that typically describe the operating point for linearization.

Triggered events describe many different systems. One such system is an
internal combustion (IC) engine. When an engine piston approaches the top
of a compression stroke, a spark is introduced and combustion occurs. The
timing of the spark for combustion is dependent on the speed and position
of the engine crankshaft. An example of a Simulink model that models
this behavior is engine.mdl which is included as a demonstration model

in Simulink.

In engine.mdl, triggered subsystems generate events when the pistons reach
both the top and bottom of the compression stroke. The linearization will
not be meaningful because of the presence of these triggered subsystems.
However, you can get a meaningful linearization while still preserving the
simulation behavior by recasting the event-based dynamics. For example,
you can use curve fitting to approximate the event-based behavior. This is
done in scdspeed.mdl, a demonstration model included in Simulink Control
Design and shown in the figure below:
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The basic functional approximation in scdspeed is included within the
Convert to mass charge block inside the subsystem scdspeed/Throttle

& Manifold/Intake Manifold where a quadratic polynomial is used to
approximate the relationship between the Air Charge, the Manifold Pressure,
and the Engine Speed.
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The approximation has the following form:

Air Charge = pyx Engine Speed + py x Manifold Pressure + p3x(Manifold Pressure)?
+ py X Manifold Pressurex Engine Speed + ps

Simulation data from the original model is used to compute the unknown
parameters p,, py, D3, P4, and p, using a least squares fitting technique.

When measured data for internal signals is available, you can use Simulink
Parameter Estimation to compute the unknown parameters. This method
is outlined in the recorded webinar,“New & Upgraded Simulink Tools for
Developing More Accurate Models & Better Tuned Control Systems”. The
webinar also contains a demonstration of the linearization of this model and
the use of the linearization to design a feedback controller.

The approximated model can now accurately simulate and linearize the
engine from approximately 1500 to 5500 RPM. The following figure shows the
comparison between a simulation of the original event-based model, and a
simulation of the new approximated model.
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Computing Operating Points for SimMechanics
Models

When computing operating points (trimming) for a SimMechanics model, you
first need to put it in trimming mode. To do this

1 Locate and open the machine environment (Env) block for the system.

2 Within the Parameters panel, set Analysis mode to Trimming. Click OK
to close the block dialog. This will create an output port in the model that
contains constraints related to errors in the system that must be set to zero
for a steady state operating point.



Recommendations for Computing Operating Points and Creating Accurate Linearized Models

3 To set these constraints to zero within a project for the model in the Control
and Estimation Tools Manager, select Operating Points in the panel on
the left, then select theCompute Operating Points > Qutputs panel.
Within this panel, set all constraints to 0.

At this point you can enter other design specifications on the states and inputs,
and then compute an operating point for your model. After you have finished

computing operating points for the SimMechanics model, make sure that you

reset the Analysis mode to Forward dynamics in the Env block dialog.

Choosing Initial Values for Computing Operating
Points

When you compute an operating point from design specifications (trimming),
it is often important to begin with a set of state and input values that are
close to the actual steady state operating point values that you are trying to
compute. To do this you can simulate the model for a specified period of time
and then take a snapshot of the state and input values at that time. You can do
this using either the Control and Estimation Tools Manager, see “Extracting
Operating Points from Simulation” in the online documentation for more
information, or using the findop command line function, see “Extracting
Values from Simulation” in the online documentation for more information.

You can then use the values from the simulation snapshot as initial values for
an operating point that you compute from specifications using optimization
methods. To initialize the operating point specifications using these
snapshot values, click the Import Initial Values button in the Compute
Operating Points panel of the Control and Estimation Tools Manager, or
use the initopspec function. See “Importing Initial Values” in the online
documentation for more information on importing initial values for an
operating point in the Control and Estimation Tools Manager.
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